Biochemistry 404 CRN 10209 Proteins Course Outline - Fall 2015

Instructors: Dr. Alisdair ("Al") Boraston (coordinator) Office and lab: Petch 216 and 218 Phone: 472-4168 Email: boraston@uvic.ca

> Dr. Stephen Evans Office and labs: Petch 239 and 242; UVC A207 Phone: 472-4548 Email:

Part 2 - Dr. Evans (October 26 – December 03)

- 1. Review of protein and peptide structure (1.5 hours)
 - Secondary structures as a structural biologist looks at them. STRUCTURE = FUNCTION, peptide bonds & Ramachandran plots, complementarity and the -helix: 4-helix bundle, globin fold, -sheets, -bulges, -turns, antibody fold, Rossmann fold, jellyroll, TIM barrels, etc.
- 2. Structure determination by protein crystallography (9 hours)
 - Crystal symmetry: What are crystals? Why use crystals?
 - X-ray scattering of a crystal: Bragg's law.
 - Crystal quality & data resolution.
 - What information can be obtained from each determination?
 - The phase problem: Heavy atoms, MAD & molecular replacement.
 - Electron density maps.
 - Data collection & structure fitting.
 - Refinement of protein structures & indicators of 'correctness'.
- 3. Structure determination by NMR (1.5 hours)
 - Larmour frequency & proton coupling.
 - Comparison of NMR of small molecules and proteins.
 - Fourier Transform methods for data collection.
 - NOE and multi-dimensional NMR.
 - Comparison of X-ray and NMR methods.
- 4. Concepts of protein folding (3.0 hours)
 - Levinthal paradox & the protein folding problem.
 - Methods to characterize protein folding: UV-Vis; NMR; X-ray scattering, enzyme activity.
 - Isomerization of peptide bonds as a rate-limiting step in protein folding.
 - Disulfide bond formation as a rate-limiting step in protein folding.
 - Cellular strategies: enzymes, chaparones & chaparonins.
 - Simple concepts of proteins folding, including the 'molten globule', nuclear condensation, hydrophobic collapse, etc.
 - Introduction to -value analysis.
- 5. Real-world examples (3.0 hours)
 - Literature examples of structure determination and examples of how macromolecular structure determines function.

Assessment of Student Performance

(1) Techniques to be used in assessment of student's performance in course:

• Grading of multiple choice, short answer and/or essay examination questions.

(2) BIOC 404 - Evaluation and weighting (undergraduate students):

•	Midterm – Thursday, October 22th	40%
•	Class assignment	10%
-	Final according tion (0 haven)	E00/

• Final examination (2 hours): 50%

Both examinations must be written and the assignment completed in order to avoid receiving an "N" grade.

(3) UVic Grading Scheme

 A^+ 90 -100 B^+ 77 - 79 C^+ 65 - 69F< 50</th>A85 -